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The flow field around a 6:1 prolate spheroid has been investigated by means of direct
numerical simulations. Contrary to earlier studies the major axis of the spheroid was
oriented perpendicular to the oncoming flow. At the subcritical Reynolds number
10 000 the laminar boundary layer separated from the frontal side of the spheroid and
formed an elliptical vortex sheet. The detached shear layer was unstable from its very
inception and even the near-wake turned out to be turbulent. The Strouhal number
associated with the large-scale shedding was 0.156, significantly below that of the
wake of a sphere. A higher-frequency mode was associated with Kelvin–Helmholtz
instabilities in the detached shear layer. The shape of the near-wake mirrored the
shape of the spheroid. Some 10 minor diameters downstream, the major axis of the
wake became aligned with the minor axis of the spheroid.
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1. Introduction
Flows around bluff bodies comprise a variety of complex flow phenomena which

depend on the shape and orientation of the body with respect to the flow direction
as well as on the Reynolds number (Re) of the flow. The wake of a circular
cylinder is the prototype of two-dimensional bluff-body wakes (see e.g. Zdravkovich
1997). Similarly, the flow past a sphere is the axisymmetric prototype of bluff-
body wakes. A comprehensive experimental and computational investigation of the
near-wake of spheres up to Re = 300 by Johnson & Patel (1999) revealed how
the originally steady and axisymmetric wake first became non-axisymmetric and
thereafter unsteady. Large-eddy simulations of the sphere wake at Reynolds number
of 10 000 by Constantinescu & Squires (2003) and Yun, Kim & Choi (2006) showed
the presence of a high-frequency mode in addition to the low-frequency large-scale
shedding, as already observed in a wind-tunnel study by Sakamoto & Haniu (1990).
According to Yun et al. (2006), the vortex shedding at a Strouhal number St ≈ 0.19
was accompanied by a broad frequency range associated with shear-layer instabilities.
Constantinescu & Squires (2004) even considered the wake flow in the supercritical
regime at Re = 1.14 × 106 by means of detached-eddy simulations. However, for
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the subcritical flow at Re = 10 000, they reported large-scale shedding at a Strouhal
number 0.195 together with secondary peaks in the range 1.9 � St � 2.4.

A prolate spheroid is a three-dimensional body with two different length scales,
one plane of symmetry and one axis of symmetry. The ratio between the semimajor
and semiminor axes, i.e. the aspect ratio, is a measure of departure from a spherical
body. Spheroids with aspect ratios 8:1, 6:1 and 3:1 can be considered as simplified
models of submarines, unmanned underwater vehicles, missiles, airships, etc. When
the aspect ratio is relatively high and the major axis is aligned with the flow the
prolate spheroid behaves as a slender body. The three-dimensional flow separation
and the wake flow become gradually more complex with increasing angle of attack.
Han & Patel (1979), for instance, presented results of a detailed experimental
investigation of a 4.3:1 spheroid whereas Wikström et al. (2004) performed large-eddy
simulations of flow past a 6:1 spheroid at incidence. None of the comprehensive studies
published on flow around prolate spheroids at incidence seem to exceed 30◦ angle of
attack.

The aim of this study is therefore to examine the flow over a 6:1 prolate spheroid
at high incidence. The major axis is taken to be perpendicular, i.e. at 90◦, to the main
flow direction. With this orientation the spheroid plays the role of a bluff body rather
than a slender object. The Reynolds number based on the minor axis diameter is
taken to be 10 000, which matches that considered in the large-eddy simulation studies
of wakes behind spheres by Constantinescu & Squires (2003) and Yun et al. (2006).
At this Reynolds number the vortex sheet separating from the surface immediately
becomes turbulent (see e.g. Sakamoto & Haniu 1990).

The wake behind a prolate spheroid without incidence is axisymmetric, at least at
low Re, just as is the wake of a sphere. The axisymmetry is broken by the incidence
angle and in the particular case of 90◦ angle of attack it can be anticipated that the
wake at mid-span will resemble the wake behind circular cylinders. At a substantially
lower Reynolds number, Sheard, Thompson & Hourigan (2008) reported that the
vortices shed in the vicinity of the cylinder mid-span resembled Kármán vortices
when the length-to-diameter ratio exceeded 4. The helical-like wake which may occur
behind a sphere at higher Re due to the shedding of hairpin vortices at varying
azimuthal locations will probably be prohibited in a wake behind a prolate spheroid
in crossflow provided that the aspect ratio is sufficiently above 1.

The frontal area of the prolate spheroid in crossflow is elliptical. At least in the
far wake, one may expect that the flow would resemble the wake formed behind
sharp-edged elliptical disks. Kuo & Baldwin (1967) and more recently Kiya & Abe
(1999) observed a puzzling switching of the axes so that the major axis of the elliptical
wake became aligned with the minor axis of the elliptical disk. This was ascribed to
different growth rates in the plane of the major and minor axes. One may speculate
whether or not the same phenomenon will occur in the wake behind a spheroid in
crossflow as the spheroid does not possess any sharp edges from which the flow will
separate.

2. Flow configuration and numerical method
In this study, we consider a geometrical configuration where the major axis of the

prolate spheroid is aligned in the spanwise y direction and is six times larger than
the minor axis. This yields an angle of incidence equal to 90◦ and an aspect ratio of
6:1. The governing equations are the time-dependent, incompressible Navier–Stokes
equations for a viscous fluid. The Reynolds number is defined as Re = UoD/ν, where
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Figure 1. (a) Flow configuration and coordinate system (not to scale). (b, c) Cross-sectional
views showing the azimuth (φ) angle in the meridional plane and the inclination (θ ) angle in
the equatorial plane. �, Front stagnation point.

Uo is the uniform inflow velocity, D is the equatorial diameter of the spheroid and ν

is the kinematic viscosity of the fluid.
The Navier–Stokes equations are solved using the well-documented direct numerical

simulation (DNS) solver MGLET (Manhart 2004). MGLET is a finite-volume code
in which the Navier–Stokes equations are discretized on a staggered Cartesian mesh
with non-equidistant grid-spacing. The discretization of the advection and diffusion
terms is second-order accurate. For time integration an explicit third-order Runge–
Kutta scheme is used. The Poisson equation for the pressure is solved by the strongly
implicit procedure (SIP) by Stone (1968).

The computational domain sketched in figure 1(a) has a streamwise length Lx =
22D, spanwise width Ly = 16D and transverse height Lz = 11D. The centre of
the spheroid is placed at 5.5D, 8D and 5.5D. This gives a minimum distance of 5D

between the surface of the body and the borders of the computational domain. A
total of 720 × 656 × 320 points are used in x, y and z directions, respectively. A
non-uniform mesh distribution is used in all the three non-homogeneous directions
in order to adequately resolve the various scales in the boundary layers and the wake
of the spheroid. The spheroid is embedded in a block with uniform grid spacings



368 G. K. El Khoury, H. I. Andersson and B. Pettersen

xm/D 1 3 5 7 9 11 13 15

y/D = 6 4.20 5.98 5.02 4.56 5.72 5.10 4.45 4.23
y/D = 8 7.72 6.30 6.75 7.49 6.19 10.4 9.77 9.57
y/D = 10 3.91 6.10 5.10 4.76 5.72 5.37 4.92 4.72

Table 1. Grid resolution ∆ = max(�x,�y,�z)/η in the meridional plane at various
streamwise positions measured from the major axis of the spheroid, i.e. xm = x − 5.5D.

�x = 0.015D, �y = 0.012D and �z = 0.008D. A free-slip condition is imposed on
the sides of the computational domain. At the inlet, a uniform flow with velocity Uo

is prescribed and at the outlet a Neumann boundary condition is imposed for the
velocities and the pressure is set to zero. A direct-forcing immersed boundary method
(IBM) is used to interpolate the no-slip boundary conditions on the spheroid surface
to the Cartesian mesh on which the computation is performed. For the interpolations,
a least squares high-order method is employed. The detailed derivation, validation
and implementation of the IBM technique in MGLET can be found in Peller et al.
(2006). The time step is kept constant and equal to 0.001D/Uo. The simulation utilizes
384 processors on an IBM P575+ parallel computer.

Throughout the present context, the following concepts will be used. The local
Reynolds number, Red = Uod/ν, is based on the local diameter d along the spheroid’s
major axis. The (x, y) and (x, z) planes of symmetry of the spheroid will be referred to
as the meridional and equatorial planes as shown in figure 1(a). The azimuth (φ) and
inclination (θ) angles are measured from the front stagnation point in the meridional
and equatorial planes, respectively (see figure 1b, c). Finally, the poles are defined as
the extremities of the spheroid in the meridional plane.

In order to verify that the current simulation is an adequately resolved direct
numerical simulation, the Kolmogorov length scale η is estimated as (ν3/ε)1/4, where

the energy dissipation rate ε = ν(∂ui/∂xk)2 is evaluated from the simulated flow field.
The local grid size ∆ relative to the Kolmogorov length scale is presented in table 1
at different streamwise positions in the meridional plane. Provided that ∆ � 5η, all
essential scales of the turbulence are resolved. The data in table 1 show that the
adopted grid spacing is sufficiently fine to resolve almost all scales in the wake.

3. Results and discussion
3.1. Shear-layer instabilities

In order to study the temporal and spatial characteristics of the separating shear
layer, time traces of the local skin-friction coefficient are depicted in figure 2 at four
different locations on the spheroid’s surface: θ = ±90◦ in the equatorial plane and
φ = ±90◦ in the meridional plane, i.e. points P1, P2, P3 and P4 in figure 1(b, c).
Here, the skin-friction coefficient is defined as Cf = 2τw/ρU 2

o , and τw is taken as
the x-component of the wall shear stress vector, i.e. as τxy = µ(∂u/∂y + ∂v/∂x) at
the poles P2 and P4, and as τxz = µ(∂u/∂z + ∂w/∂x) in the equatorial locations P1
and P3. Vigorous fluctuation levels are found to occur simultaneously in the shear
layers emanating near the poles (φ = ±90◦) whereas in the equatorial plane, the time
traces exhibit more moderate fluctuations superimposed on a slowly varying signal.
The time traces of the skin friction at the poles seem to fluctuate about an almost
zero time-mean value. It is noteworthy that the major contribution to τxy comes from
∂v/∂x, whereas ∂u/∂y varies irregularly about a small negative mean value at P2
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Figure 2. Time traces of the local skin-friction coefficient. (a) θ = 90◦, P1. (b) φ = 90◦, P2.
(c) θ = −90◦, P3. (d ) φ = −90◦, P4.
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Figure 3. Power spectra of the local skin-friction coefficient. (a) θ = 90◦, P1. (b) φ = 90◦, P2.
(c) θ = −90◦, P3. (d ) φ = −90◦, P4. Notice the logarithmic scale along the vertical axis.

which thus implies that the mean flow separates only marginally upstream of the pole.
The presence of a high-frequency mode at all four points indicates that the shear-layer
instability occurs globally along the circumference of the spheroid in the (y, z) plane
of symmetry. Such global high fluctuation levels were also observed by Yun et al.
(2006) in the shear layer of uniform flow past a sphere at the same Reynolds number.
In that case, Yun et al. (2006) took time traces of the radial velocity in the vortex
ring at a streamwise location of D from the sphere centre.

The complexity in the skin-friction signals provides an impression of the chaotic
nature of the flow pattern at this fairly high Reynolds number and is more evident
in the accompanying frequency spectra presented in figure 3. In addition to a main
frequency due to vortex shedding, which occurs at a Strouhal number St ≈ 0.156
for points P1 and P3, the power spectra in figure 3(a, c) also contain an additional
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Figure 4. (Colour online) Instantaneous λ2 values. (a) Meridional plane; (b) top
three-dimensional view; (c) equatorial plane; (d ) zoomed view of (a).

high-frequency component in the range 3.2 � f D/Uo � 3.4. Such high frequencies
are associated with the Kelvin–Helmholtz instability in the shear layers and were
previously observed in the range 1.9 � St � 2.4 by Constantinescu & Squires (2004) in
their numerical investigation of uniform flow past a sphere at the subcritical Reynolds
number 10 000. By considering the polar points P2 and P4, on the other hand, the
power spectra show no evidence of a low-frequency component corresponding to the
vortex-shedding mechanism. In fact, the distinct peaks occur at a single dominant
frequency of St = 3.33, which is attributed to the shear-layer instability.

While figures 2 and 3 give a quantitative impression of the shear-layer instabilities,
the separation of the boundary layer from the spheroid surface and the formation
of Kelvin–Helmholtz vortices can be visualized by means of isocontours of λ2 which
are extracted following the method proposed by Jeong & Hussain (1995). Within the
meridional plane and in the vicinity of the poles, figure 4(a) indicates a boundary layer
separation where small-scale vortices are entrained into the wake. This behaviour is
considerably different from that observed in the equatorial plane in figure 4(c). In this
case, the separating shear layer remains laminar for a while and the Kelvin–Helmholtz
instability occurs at an early stage that is upstream to the spheroid’s rear stagnation
point. Subsequently, the laminar shear layer eventually breaks up into small-scale
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Figure 6. Time trace of transverse velocity w/Uo in the meridional plane at different
spanwise locations taken along the sampling line located at xm = 3.5D.

vortices and evolves into a turbulent state. Further observations that can be made
from figure 4 will be discussed in § 3.3.

3.2. Frequency analysis in the wake

In order to investigate the shedding frequencies and instabilities in the wake, the
time evolution of the velocity components u, v, w and pressure p has been evaluated
within the meridional plane. The total simulated time was 100D/Uo which covers
about 16 shedding cycles in the equatorial plane.

The time evolution of the transverse velocity w/Uo is shown in figure 5. The
sampling is taken along a line parallel to the y-axis and located 3.5D downstream of
the major axis of the spheroid. The herringbone pattern clearly indicates the oblique
vortex shedding in the wake of the prolate spheroid. The alternating positive and
negative values are associated with the large-scale vortex shedding and the resulting
herringbone pattern is symmetric about the equatorial (x, z) plane. This large-scale
mode seems to be mostly confined to a 4D wide band around the equatorial plane
whereas a higher-frequency mode is apparent in the fringes of the wake. The time
traces of w/Uo in figure 6 show beyond any doubt the differences in the signal near
the poles and at the equator. The transverse velocity is more energetic downstream
of the equator and associated primarily with the large-scale eddy shedding. Near the
poles, on the other hand, the transverse motion is dominated by a high-frequency
mode and the low-frequency vortex shedding is not discernible.

To further explore this phenomenon, frequency spectra were obtained by means of
a Fourier transformation of time series like those in figure 6. The frequency f of the
most energetic mode was obtained at all spanwise locations and the resulting local
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Strouhal number Std defined as f d/Uo is shown in figure 7. It is readily observed
that Std increases from the poles towards equator where the maximum value 0.156
is reached. This is exactly the same Strouhal number value as that associated with
the time variation of the skin-friction coefficient in the equatorial points P1 and P3
shown in figure 2(a, c).

However, in the vicinity of the poles, the flow is dominated by more high-
frequency modes which give rise to local Strouhal numbers in the range from 0.15
to 0.50. These high-frequency modes are associated with the polar regions and their
dominance over the shedding mode is confined to a distance 1D away from the pole.
The high-frequency mode can be attributed to the Kelvin–Helmholtz instabilities
in the separated shear layer. Yun et al. (2006) observed a similar co-existence
of a shear-layer instability and wake instabilities in the wake behind a sphere at
Re = 10 000. They examined the time trace of the radial velocity component about
5.2D from the sphere axis in a plane which contained large-scale vortical structures.
The resulting spectra showed a frequency component which was ascribed to the shear-
layer instability. However, that particular frequency was substantially less energetic
than the vortex-shedding frequency and the low-energy content was ascribed to the
quasi-random time variation of the wavy structures in the azimuthal direction. In the
present wake, on the other hand, the high-frequency mode is even more energetic
than the shedding mode in a certain area.

The data in figure 7(a) can be plotted against the local Reynolds number as in
figure 7(b). The low-frequency data from the two halves of the spheroid are seen
to collapse and a linear Std–Red variation is obtained. This simply implies that the
shedding frequency f is constant along the span of the spheroid. Thus, in spite of
the varying cross-section along the span, the shedding frequency remains the same. It
should be emphasized that the gaps in the straight line correspond to certain spanwise
locations where the high-frequency mode is more energetic than the low-frequency
shedding mode, for instance as demonstrated by the upper and lower time traces in
figure 6. These high-frequency modes associated with the shear-layer instability were
clearly distinguishable 3.5D downstream of the major axis in figures 5–7. These modes
are gradually attenuated with downstream distance and a high-frequency component
is no longer discernible 9D downstream and only the lower-frequency shedding mode
prevails.
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3.3. Instantaneous vortical structures

Instantaneous vorticity fields were visualized by means of λ2 isocontours in figure 4.
The perspective view in figure 4(b) gives a clear view of the shear-layer instability
which occurs in the vortex sheet shortly after the shear layer separated from the
surface of the spheroid. The presence of thin vortex filaments roughly aligned with
the major axis can be observed. These filaments are fairly long but do not extend over
the entire span. As they are convected downstream, they are distorted and eventually
broken up by the vigorous motion in the near-wake.

The plots of λ2 in the meridional and equatorial planes in figures 4(a) and 4(c),
respectively, give the immediate impression that the wake contracts in the former and
expands in the latter. At x = 12D, i.e. 6.5D downstream of the major axis, the width
of the wake seems to be roughly the same in the y- and z-directions. The cross-stream
slices depicted in figure 8 give another impression of this. It is particularly noteworthy
that the axis of the wake has switched at x = 20D, in the sense that the major axis of
the wake is now aligned with the minor axis of the spheroid. A similar axis switching
was observed experimentally by Kuo & Baldwin (1967) and Kiya & Abe (1999) in
the wake behind an elliptical disk. They reported that axis switching occurred at
about 4D downstream of the disk, i.e. significantly closer to the bluff body than in
this study.

4. Conclusions
The present investigation is apparently the first to explore a prolate spheroid in a

crossflow, i.e. with the major axis perpendicular to the direction of the oncoming flow.
This orientation breaks the axisymmetry of the laminar boundary layer at the frontal
side of the body, the separated vortex sheet and the resulting wake flow. The Strouhal
number 0.156 associated with the large-scale shedding was indeed significantly below
that of the wake of a sphere at the same Reynolds number (Sakamoto & Haniu 1990;
Constantinescu & Squires 2004). In spite of the spanwise variation of the diameter of
the local cross-section, the vortex shedding occurred at one single frequency. This is in
contrast to the cellular vortex shedding repeatedly observed behind tapered circular
cylinders (Narasimhamurthy, Andersson & Pettersen 2009).

The flow around mid-span, i.e. in the equatorial plane in figure 4(c), resembled at
first sight the flow past an infinitely long circular cylinder. However, the shedding
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frequency of the large-scale vortices is substantially lower than that observed in the
wake behind a circular cylinder. In the present case, fluid is sucked into the wake
around the poles of the spheroid, as shown in figure 4(d ). This inflow tends to
widen the separated vortex sheet, increase the base pressure and reduce the shedding
frequency.

The departure from axisymmetry excludes the presence of a helical vortex pattern
as observed in the wake of a sphere by Sakamoto & Haniu (1990) and Yun et al.
(2006). The shape of the near-wake reflected the elliptical shape of the meridional
cross-section of the spheroid. Some 10D downstream, however, the major axis of
the wake became aligned with the minor axis of the spheroid. Such axis switching
has been reported earlier from experimental studies of the wake behind sharp-edged
elliptical plates by Kuo & Baldwin (1967) and Kiya & Abe (1999). Since the same
axis switching also occurred in the wake behind the prolate spheroid in this study,
it can be concluded that this peculiar flow phenomenon depends only on the wake
asymmetry and is otherwise independent of the actual bluff body.

A PhD research fellowship for the first author and computing time was provided
by the Research Council of Norway.
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